Synthesis and Insecticidal Activities of Novel N-Sulfenyl-N'-tert-butyl-N,N'-diacylhydrazines. 1. N-Alkoxysulfenate Derivatives

Qiqi Zhao, † Jian Shang, †,‡ Yuxiu Liu, † Kaiyun Wang, $^{\$}$ Fuchun Bi, † Runqiu Huang, † and Qingmin Wang* †

State Key Laboratory of Elemento-Organic Chemistry, Institute of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, People's Republic of China, Chemistry and Biologic College, Yantai University, Yantai 264005, People's Republic of China, and College of Plant Protection, Shandong Agriculture University, Tai'an 271018, People's Republic of China

A series of novel *N*-alkoxysulfenyl-*N'-tert*-butyl-*N,N'*-diacylhydrazines were designed and synthesized as insect growth regulators by the key intermediates *N*-chlorosulfenyl-*N'-tert*-butyl-*N,N'*-diacylhydrazines, which were prepared for the first time. Compared to *N'-tert*-butyl-*N,N'*-diacylhydrazines, these *N*-alkoxysulfenyl derivatives displayed better solubility and improved hydrophobicities. The insecticidal activities of the new compounds were evaluated. The results of bioassays showed that the title compounds possessed a combination of strong stomach as well as contact poison property higher than the corresponding parent compounds. In particular, *N*-methoxysufenyl-*N'-tert*-butyl-*N*-4-ethylbenzoyl-*N'*-3,5-dimethylbenzoylhydrazide (**IIIf**) as a field testing candidate has higher stomach toxicities against oriental armyworm and beet armyworm than the corresponding parent compound **RH-5992**. Furthermore, the compound **IIIf** exhibits higher contact activities against oriental armyworm, Asian corn borer, tobacco cutworm, and cotton bollworm than **RH-5992**. The sulfenyl substituent was essential for high larvacidal activity.

KEYWORDS: N-Sulfenate derivative; diacylhydrazine; RH-5992; stomach toxicity, contact toxicity; insecticidal activity; insect growth regulator

INTRODUCTION

Synthetic *N-tert*-butyl-*N,N'*-diacylhydrazines, discovered by Rohm and Haas Company in the mid-1980s, are a promising class of chemically and mechanistically novel insect control agents which have been found to work as nonsteroidal ecdysone agonists inducing, especially in Lepidoptera, precocious molting, leading to death (1-5). Among these compounds, *N-tert*-butyl-N,N'-dibenzoylhydrazine (**RH-5849**, **A**) was the first to be thoroughly investigated with regard to insecticidal effects and functional modes. N-tert-Butyl-N'-4-ethylbenzoyl-N-3,5-dimethylbenzoylhydrazide (tebufenozide; RH-5992, B) was the first to be commercialized as a leptidopteran-specific insecticide under the trade names Mimic, Confirm, and Romdan in several countries (6, 7). Because of the unique action mechanism, simple structure, low toxicity to vertebrates, and high insecticidal selectivity, diacylhydrazines have attracted considerable attention for decades (8–12). Recently, it has been reported that N'benzoheterocyclecarbonyl-N-tert-butyl-3,5-dimethylbenzohydrazide analogues showed high insecticidal activities (13–15), of which **ANS-118** and **JS-118** represent successful examples. *N'-tert*-Butyl-*N'*-3,5-dimethylbenzoyl-*N*-5-methyl-6-chromane-carbohydrazide (Chromafenozide; **ANS-118**, **C**) has been commercialized as an insecticide under the trade name Matric (16, 17), and *N'-tert*-butyl-*N'*-(3,5-dimethylbenzoyl)-2,7-dimethyl-2,3-dihydrobenzofuran-6-carbohydrazide (**JS-118**, **D**) has been developing by the Jiangsu Institute of Agricultural Chemicals, P. R. China (18, 19).

However, the preceding diacylhydraines have low solubility in water and limited solubility in common organic solvents.

^{*} To whom correspondence should be addressed. Telephone: +86-(0)22-23499842. Fax: +86-(0)22-23499842. E-mail: wang98h@263.net.

[†] Nankai University.

[‡] Yantai University.

[§] Shandong Agriculture University.

Scheme 1. General Synthetic Route for Compound III

Table 1. Physical Properties and Elemental Analyses of the Compounds IIIa-u

						elen	n anal. (%, calc)	
compd	R	R ¹	R^2	mp (°C)	yield (%)	С	Н	N
Illa	methyl	Н	Н	122–125	29.6	63.38 (63.66)	6.13 (6.19)	7.90 (7.82)
IIIb	ethyl	Н	Н	oil	19.5	64.53 (64.49)	6.34 (6.49)	7.61 (7.52)
IIIc	<i>n</i> -propyl	Н	Н	oil	70.0	65.20 (65.26)	6.54 (6.78)	7.47 (7.25)
IIId	<i>i</i> -propyl	Н	Н	83-85	18.5	65.41 (65.26)	6.95 (6.78)	7.46 (7.25)
Ille	<i>t</i> -butyl	Н	Н	126-128	45.3	66.07 (65.97)	6.93 (7.05)	7.26 (6.99)
IIIf	methyl	Et	3,5-Me ₂	74–76	56.6	66.51 (66.64)	7.24 (7.29)	6.77 (6.76)
IIIg	ethyl	Et	3,5-Me ₂	83-85	77.0	67.17 (67.26)	7.57 (7.53)	6.71 (6.54)
IIIĥ	<i>n</i> -propyl	Et	3,5-Me ₂	oil	53.8	67.77 (67.84)	7.45 (7.74)	6.40 (6.33)
IIIi	<i>i</i> -propyl	Et	3,5-Me ₂	91-93	72.2	67.88 (67.84)	7.72 (7.74)	6.49 (6.33)
IIIj	<i>n</i> -butyl	Et	3,5-Me ₂	oil	29.7	68.20 (68.39)	7.80 (7.95)	5.99 (6.13)
IIIk	<i>i</i> -butyl	Et	3,5-Me ₂	oil	50.7	` 479.:	2343 (479.2339) ^a	, ,
IIII	<i>t</i> -butyl	Et	3,5-Me ₂	123-125	76.6	68.42 (68.39)	7.93 (7.95)	6.20 (6.13)
IIIm	n-pentyl	Et	3,5-Me ₂	43-45	40.7	68.85 (68.90)	8.11 (8.14)	5.85 (5.95)
IIIn	t-pentyl	Et	3,5-Me ₂	94-96	49.8	68.72 (68.90)	8.11 (8.14)	6.01 (5.95)
Illo	benzyl	Et	3,5-Me ₂	75–76	36.0	70.90 (70.99)	7.09 (6.98)	5.69 (5.71)
IIIp	2-phenethyl	Et	3,5-Me ₂	90-92	43.7	71.61 (71.40)	7.07 (7.19)	5.58 (5.55)
Iliq	2-fluoroethyl	Et	3,5-Me ₂	96-98	61.2	64.40 (64.55)	7.07 (7.00)	6.30 (6.27)
IIIr	2,2,2-trifluoroethyl	Et	3,5-Me ₂	86–88	56.7	59.70 (59.74)	6.01 (6.06)	5.96 (5.81)
IIIs	2-methoxyethyl	Et	3,5-Me ₂	77–79	46.3	65.31 (65.47)	7.38 (7.47)	6.18 (6.11)
IIIt	2-ethoxyethyl	Et	3,5-Me ₂	oil	56.6	` '	2292 (495.2288) ^á	,
Illu	methyl	b	3,5-Me ₂	60–62	37.0	65.79 (65.76)	7.04 (7.06)	5.95 (6.14)

^a The value of HRMS. ^b R¹ is identical to the corresponding substituents of the parent compound (JS-118).

Moreover, they have poor hydrophilicity and cuticular penetration; thus, they have low contact toxicity. These disadvantages impede their field application (20–22).

The activity spectrum of a pesticide is often determined by the physical properties of the compound, and it is possible to develop a new insecticide with improved biological properties by attaching an appropriate functional group to an insecticide. Moreover, the physical properties of an insecticidal compound may be manipulated to obtain products with other selected types of activity by proper selection of the derivatizing moiety (22, 23). For example, the *N*-methoxysulfenyl derivative (**F**) of carbofuran displayed an insecticidal activity comparable to that of carbofuran (**E**) with a much lower mammalian toxicity (24, 25).

Encouraged by these reports, we developed an idea that the

introduction of an alkoxysulfenyl substituent into *N'-tert*-butyl-*N*,*N'*-diacylhydrazines by substituting the hydrogen on the *N'* atom could improve biological properties and suffer shortcomings. Therefore, in a search for new insect growth regulators with improved profiles, we designed and synthesized a series of novel *N*-alkoxysulfenyl-*N'-tert*-butyl-*N*,*N'*-diacylhydrazines (III) as shown in **Scheme 1**.

MATERIALS AND METHODS

Instruments. The title compounds were synthesized under a nitrogen atmosphere. ¹H NMR spectra were obtained at 300 MHz using a Bruker AV300 spectrometer or at 400 MHz using a Varian Mercury Plus400 spectrometer in CDCl₃ solution with tetramethylsilane as the internal standard. Chemical shift values (δ) were given in ppm. Elemental analyses were determined on a Yanaca CHN Corder MT-3 elemental analyzer. HRMS data was obtained on a FTICR-MS instrument (Ionspec 7.0T). The melting points were determined on an X-4 binocular microscope melting point apparatus (Beijing Tech Instruments Co., Beijing, China) and were uncorrected. Yields were not optimized.

General Synthesis. All anhydrous solvents were dried and purified by standard techniques just before use. *N'-tert*-Butyl-*N,N'*-diacylhydrazines (**I**) were synthesized by the literature method (*3, 21*). Sulfur dichloride was prepared by the reaction of sulfur monochloride with chlorine (*26*). Pyridine was distilled over sodium hydroxide pellets and kept dry by storing over the same reagent.

General Synthetic Procedure for II. To a magnetically stirred and cooled (-20 °C) solution of sulfur dichloride (0.83 g, 8 mmol) in dichloromethane (15 mL) was added dropwise a solution of pyridine (0.63 g, 8 mmol) in dichloromethane (5 mL). After addition was complete, the reaction mixture was stirred below -15 °C for 15 min. Then, a solution of *N'-tert*-butyl-*N,N'*-diacylhydrazines (I) (7 mmol) in dichloromethane (5 mL) was added, and the resulting mixture was stirred at room temperature for 4 h. The solvent was removed in vacuo to afford a viscous residue, and then petroleum ether (60–90 °C (20 mL) was added. The mixture was stirred at -10 °C for 15 min and then filtered to remove the pyridinium chloride. The filtrate was directly used for the next step without further purification.

Table 2. ¹H NMR of Compounds IIIa-u

compd	δ (ppm)
IIIa	7.42-6.87 (m, 10H, Ph), 3.27 (s, 3H, OCH ₃), 1.67 (s, 9H, C(CH ₃) ₃)
IIIb	7.45–6.78 (m, 10H, Ph), 3.48 (m, 1H, CH_2), 3.15 (m, 1H, CH_2), 1.60 (s, 9H, $C(CH_3)_3$), 0.84 (t, $^3J_{HH}=7.6$ Hz, 3H,
	CH₂CH₃)
IIIc	7.41–6.84 (m, 10H, Ph), 3.45 (m, 1H, OCH ₂), 3.07 (m, 1H, OCH ₂), 1.67 (d, 9H, C(CH ₃) ₃), 1.26 (m, 2H, CH ₂ CH ₃), 0.66
IIId	(m, 3H, CH ₂ CH ₃) 6.77–7.44 (m, 10H, Ph), 3.44–3.36 (m, 1H, CH), 1.68 (s, 9H, C(CH ₃) ₃), 1.04 (d, 3H, $^{3}J_{HH} = 6.0$ Hz, CH(CH ₃) ₂), 0.63
IIId	0.77-7.44 (III, 10H, PII), $3.44-3.30$ (III, 1H, CH), 1.00 (S, 9H, C(CH3)3), 1.04 (d, 3H, 3 _{HH} = 0.0 Hz, CH(CH3)2), 0.03 (d, 3H, 3 _{HH} = 0.0 Hz, CH(CH3)2)
IIIe	(4, 311, 311 - 0.012, C11(CH3)2) 7.49–6.73 (m, 10H, Ph), 0.90 (s, 9H, OC(CH ₃) ₃), 1.68 (s, 9H, NC(CH ₃) ₃)
IIIf	7.26–6.85 (m, 7H, Ph), 3.31 (s, 3H, OCH ₃), 2.63 (q, $^{3}J_{HH} = 7.6$ Hz, 2H, PhCH ₂ CH ₃), 2.24 (s, 6H, Ph(CH ₃) ₂), 1.65 (s,
••••	9H, C(CH ₃) ₃), 1.20 (t, ³ J _{HH} = 7.6 Hz, 3H, PhCH ₂ C H ₃)
IIIg	7.26–6.83 (m, 7H, Ph), 3.65–3.54 (m, 1H, OCH ₂), 3.34–3.24 (m, 1H, OCH ₂), 2.62 (q, 2H, ³ J _{HH} = 7.6 Hz, PhCH ₂ CH ₃),
•	2.24 (s, 6H, PH(CH ₃) ₂), 1.65 (s, 9H, C(CH ₃) ₃), 1.20 (t, ³ J _{HH} = 7.6 Hz, 3H, PhCH ₂ CH ₃), 0.92 (t, ³ J _{HH} = 7.0 Hz, 3H,
	OCH ₂ CH ₃)
IIIh	7.26–6.83 (m, 7H, Ph), 3.54–3.44 (m, 1H, OCH ₂), 3.19–3.09 (m, 1H, OCH ₂), 2.62 (q, ³ J _{HH} = 7.6 Hz, 2H, PhCH ₂ CH ₃),
	2.24 (s, 6H, Ph(CH ₃) ₂), 1.65 (s, 9H, C(CH ₃) ₃), 1.33–1.22 (m, 2H, CH ₂ CH ₂ CH ₃), 1.20 (t, 3H, $^{3}J_{HH} = 7.6$ Hz,
	PhCH ₂ CH ₃), 0.67 (t, 3H, $^3J_{HH} = 7.2$ Hz, CH ₂ CH ₂ CH ₃)
IIIi	7.26–6.79 (m, 7H, Ph), 3.52–3.40 (m, 1H, CH), 2.63 (q, ${}^{3}J_{HH} = 7.6$ Hz, 2H, PhCH ₂ CH ₃), 2.24 (s, 6H, Ph(CH ₃) ₂), 1.66
	(s, 9H, C(CH ₃) ₃), 1.18 (t, ${}^{3}J_{HH} = 7.6$ Hz, 3H, PhCH ₂ CH ₃), 1.04 (d, ${}^{3}J_{HH} = 6.0$ Hz, 3H, CH(CH ₃) ₂), 0.65 (d, ${}^{3}J_{HH} = 6.0$ Hz, 3H, CH(CH ₃) ₂), 0.65 (d, ${}^{3}J_{HH} = 6.0$
	6.0 Hz, 3H, CH(C H ₃) ₂)
IIIj	7.25–6.83 (m, 7H, Ph), 3.58–3.47 (m, 1H, OCH ₂), 3.21–3.10 (m, 1H, OCH ₂), 2.63 (q, ³ J _{HH} = 7.6 Hz, 2H, PhCH ₂ CH ₃),
	2.24 (s, 6H, PH(C H ₃) ₂), 1.65 (s, 9H, C(CH ₃) ₃), 1.28–1.18 (m, 5H, PhCH ₂ C H ₃ and CH ₂ CH ₂ CH ₂ CH ₃), 1.15–1.02 (m,
IIIk	2H, $CH_2CH_2CH_2CH_3$), 0.74 (t, ${}^3J_{HH} = 7.2$ Hz, 3H, $CH_2(CH_2)_2CH_3$) 7.08 (d, ${}^3J_{HH} = 8.1$ Hz, 2H, Ph), 6.99 (s, 3H, Ph), 6.86 (d, ${}^3J_{HH} = 8.1$ Hz, 2H, Ph), 3.34–3.23 (m, 1H, OCH ₂),
IIIK	2.99–2.89 (m, 1H, OCH ₂), 2.63 (q, $^{3}J_{HH} = 7.5$ Hz, 2H, PhCH ₂ CH ₃), 2.25 (s, 6H, Ph(CH ₃) ₂), 1.66 (s, 9H, C(CH ₃) ₃),
	2.99–2.09 (III, 1H, OCH ₂), 2.03 (q, $J_{HH} = 7.5$ Hz, 2H, PhCH ₂ CH ₃), 2.23 (s, 6H, Ph(CH ₃) ₂), 1.00 (s, 9H, O(CH ₃) ₃), 1.53–1.42 (m, 1H, CH ₂ CH(CH ₃) ₂), 1.20 (t, $^{3}J_{HH} = 7.5$ Hz, 3H, PhCH ₂ CH ₃), 0.69 (d, $^{3}J_{HH} = 6.6$ Hz, 3H,
	1.55-1.42 (III, 1H, CH ₂ CH(CH ₃) ₂), 1.20 (I, ³ HH = 7.5 Hz, 3H, PICH ₂ CH ₃), 0.69 (II, ³ HH = 6.6 Hz, 3H, CH ₂ CH(CH ₃) ₂)
IIII	7.26–6.74 (m, 7H, Ph), 2.62 (q, $^{3}J_{HH} = 7.6$ Hz, 2H, PhCH ₂ CH ₃), 2.19 (s, 6H, Ph(CH ₃) ₂), 1.67 (s, 9H, NC(CH ₃) ₃), 1.20
	(t, 3H, PhCH ₂ CH ₃), 0.91 (s, 9H, OC(CH ₃) ₃)
IIIm	7.08 (d, $^{3}J_{HH} = 8.1$ Hz, 2H, Ph), 6.99 (s, 3H, Ph), 6.84 (d, $^{3}J_{HH} = 8.1$ Hz, 2H, Ph), 3.59–3.46 (m, 1H, OCH ₂),
	3.22–3.10 (m, 1H, OCH ₂), 2.63 (q, ${}^{3}J_{HH} = 7.5$ Hz, 2H, PhCH ₂ CH ₃), 2.25 (s, 6H, Ph(CH ₃)), 1.66 (s, 9H, C(CH ₃) ₃),
	1.34–0.96 (m, 9H, PhCH ₂ CH ₃ and CH ₂ (CH ₂) ₃ CH ₃), 0.80 (t, ${}^{3}J_{HH} = 7.2$ Hz, 3H, CH ₂ (CH ₂) ₃ CH ₃)
IIIn	7.10–6.67 (m, 7H, Ph), 2.63 (q, ${}^{3}J_{HH} = 7.5 \text{ Hz}$, 2H, PhCH ₂ CH ₃), 2.20 (s, 6H, Ph(CH ₃) ₃), 1.67 (s, 9H, C(CH ₃) ₃),
	1.31–1.10 (m, 5H, PhCH ₂ CH ₃ and C(CH ₃) ₂ CH ₂ CH ₃), 0.86 (s, 3H, C(CH ₃) ₂ CH ₂ CH ₃), 0.78 (s, 3H, C(CH ₃) ₂ CH ₂ CH ₃),
	0.70 (t, ${}^{3}J_{HH} = 7.5$ Hz, 3H, C(CH ₃) ₂ CH ₂ CH ₃)
Illo	7.28–7.19 (m, 3H, Ph), 7.12 (d, ${}^{3}J_{HH} = 8.1$ Hz, 2H, Ph), 6.99 (s, 3H, Ph), 6.94–6.81 (m, 4H, Ph), 4.58 (d, ${}^{2}J_{HH} =$
	11.4 Hz, 1H, OCH ₂), 4.09 (d, ${}^{2}J_{HH} = 11.4$ Hz, 1H, OCH ₂), 2.66 (q, ${}^{3}J_{HH} = 7.5$ Hz, 2H, PhCH ₂ CH ₃), 2.22 (s, 6H,
	Ph(CH ₃) ₂), 1.69 (s, 9H, C(CH ₃) ₃), 1.24 (t, ${}^{3}J_{HH} = 7.5$ Hz, 3H, PhCH ₂ CH ₃)
IIIp	7.24–6.79 (m, 12H, Ph), 3.80–3.67 (m, 1H, OCH ₂), 3.44–3.32 (m, 1H, OCH ₂), 2.70–2.52 (m, 4H, PhC \mathbf{H}_2 CH ₃ and
	OCH ₂ CH ₂), 2.24 (s, 6H, Ph(CH ₃) ₃), 1.60 (s, 9H, C(CH ₃) ₃), 1.20 (t, ${}^{3}J_{HH} = 7.5$ Hz, 3H, PhCH ₂ CH ₃)
IIIq	7.15–6.80 (m, 7H, Ph), 4.27 (t, ${}^{3}J_{HH} = 4.2$ Hz, ${}^{2}J_{HF} = 47.4$ Hz, 1H, FCH ₂), 4.12 (t, ${}^{3}J_{HH} = 4.2$ Hz, ${}^{2}J_{HF} = 47.4$ Hz,
	1H, FCH ₂), 3.80–3.61 (m, 1H, OCH ₂), 3.47–3.27 (m, 1H, OCH ₂), 2.64 (q, ${}^{3}J_{HH} = 7.5$ Hz, 2H, PhCH ₂ CH ₃), 2.25 (s, CH, PhCH ₂ CH ₃), 4.64 (h, ${}^{4}J_{HH} = 7.5$ Hz, 2H, PhCH ₂ CH ₃), 4.64 (h, ${}^{4}J_{HH} = 7.5$ Hz, 2H, PhCH ₂ CH ₃), 4.65 (h, ${}^{4}J_{HH} = 7.5$ Hz, 2H, PhCH ₂ CH ₃), 4.64 (h, ${}^{4}J_{HH} = 7.5$ Hz, 2H, PhCH ₂ CH ₃), 4.65 (h, ${}^{4}J_{HH} = 7.5$ Hz, 2H, PhCH ₂ CH ₃), 4.64 (h, ${}^{4}J_{HH} = 7.5$ Hz, 2H, PhCH ₂ CH ₃), 4.65 (h, ${}^{4}J_{HH} = 7.5$ Hz, 2H, PhCH ₂ CH ₃), 4.65 (h, ${}^{4}J_{HH} = 7.5$ Hz, 2H, PhCH ₂ CH ₃), 4.65 (h, ${}^{4}J_{HH} = 7.5$ Hz, 2H, PhCH ₂ CH ₃), 4.65 (h, ${}^{4}J_{HH} = 7.5$ Hz, 2H, PhCH ₂ CH ₃), 4.65 (h, ${}^{4}J_{HH} = 7.5$ Hz, 2H, PhCH ₂ CH ₃), 4.65 (h, ${}^{4}J_{HH} = 7.5$ Hz, 2H, PhCH ₂ CH ₃), 4.65 (h, ${}^{4}J_{HH} = 7.5$ Hz, 2H, PhCH ₂ CH ₃), 4.65 (h, ${}^{4}J_{HH} = 7.5$ Hz, 2H, PhCH ₂ CH ₃ CH ₃), 4.65 (h, ${}^{4}J_{HH} = 7.5$ Hz, 2H, PhCH ₂ CH ₃
IIIr	6H, $Ph(CH_3)_2$), 1.66 (s, 9H, $C(CH_3)_3$), 1.21 (t, $J = 7.5$ Hz, 3H, $PhCH_2CH_3$) 7.18–6.84 (m, 7H, Ph), 3.79–3.60 (m, 1H, OCH_2), 3.44–3.26 (m, 1H, OCH_2), 2.65 (q, $^3J_{HH} = 7.5$ Hz, 2H, $PhCH_2CH_3$),
"""	2.26 (s, 6H, Ph(CH ₃) ₂), 1.64 (s, 9H, C(CH ₃) ₃), 1.21 (t, $^{3}J_{HH} = 7.5$ Hz, 3H, PhCH ₂ CH ₃)
IIIs	7.09 (d, $^{3}J_{HH} = 8.1$ Hz, 2H, Ph), 6.99 (s, 3H, Ph), 6.85 (d, $^{3}J_{HH} = 7.8$ Hz, 2H, Ph), 3.71–3.60 (m, 1H, SOCH ₂),
	3.34–3.24 (m, 1H, SOCH ₂), 3.21 (s, 3H, OCH ₃), 3.19 (t, ${}^{3}J_{HH} = 4.8$ Hz, 2H, CH ₃ OCH ₂), 2.63 (q, ${}^{3}J_{HH} = 7.5$ Hz, 2H,
	PhCH ₂ CH ₃), 2.25 (s, 6H, Ph(CH ₃) ₂), 1.66 (s, 9H, C(CH ₃) ₃), 1.20 (t, ${}^{3}J_{HH} = 7.5$ Hz, 3H, PhCH ₂ CH ₃)
IIIt	7.08 (d, $^{3}J_{HH} = 8.1$ Hz, 2H, Ph), 6.99 (s, 3H, Ph), 6.86 (d, $^{3}J_{HH} = 8.1$ Hz, 2H, Ph), 3.72–3.61 (m, 1H, SOCH ₂),
	3.39–3.27 (m, 3H, SOCH ₂ and OCH ₂ CH ₃), 3.23 (t, $^{3}J_{HH} = 7.5$ Hz, 2H, SOCH ₂ CH ₂), 2.63 (q, $^{3}J_{HH} = 7.5$ Hz, 2H,
	PhCH ₂ CH ₃), 2.24 (s, 6H, Ph(CH ₃) ₂), 1.66 (s, 9H, C(CH ₃) ₃), 1.20 (t, ${}^{3}J_{HH} = 7.5$ Hz, 3H, PhCH ₂ CH ₃), 1.10 (t, ${}^{3}J_{HH} = 7.5$ Hz, 3H, PhCH ₂ CH ₃ CH ₃), 1.10 (t, ${}^{3}J_{HH} = 7.5$ Hz, 3H, PhCH ₂ CH ₃ CH ₃ CH ₃ CH
	6.9 Hz, 3H, OCH ₂ CH ₃)
IIIu	7.11–6.70 (m, 5H, Ph), 4.95–4.81 (m, 1H, PhOCH(CH ₃)CH ₂), 3.32–3.21 (m, 4H, OCH ₃ and PhCH ₂), 2.81–2.72 (m, 1H,
	PhCH ₂), 2.26 (s, 6H, Ph(CH ₃) ₂), 1.66 (s, 9H, C(CH ₃) ₃), 1.57 (s, 3H, PhCH ₃), 1.42 (d, ${}^{3}J_{HH} = 6.4$ Hz, 3H,
	$PhOCH(CH_3)CH_2)$

General Synthetic Procedure for the Target Compounds IIIa-u.

To a suspension of sodium hydride (8 mmol) in anhydrous xylene (20 mL) was added dropwise alcohol at room temperature. The reaction mixture was warmed to about 70 °C, stirring was continued for 2 h, and the mixture was then cooled to -10 °C. The above filtrate of *N*-chlorosulfenyl diacylhydrazine (II) was added dropwise, the resulting mixture was stirred at room temperature for 4 h and filtered, and the filtrate was concentrated under reduced pressure. The residue was purified by column chromatography on a silica gel using petroleum ether (60–90 °C) and ethyl acetate as the eluent to afford the title compounds IIIa—u.

Biological Assay. All bioassays were performed on representative test organisms reared in the laboratory. The bioassay was repeated at 25 ± 1 °C according to statistical requirements. Assessments were made

on a dead/alive basis, and mortality rates were corrected using Abbott's formula (27). Evaluations are based on a percentage scale of 0–100 in which 0 = no activity and 100 = total kill.

Stomach Toxicity against Oriental Armyworm (*Mythimna separata*). The stomach toxicities of the title compounds **II**a—u and the parent compounds **I** against Oriental armyworm were evaluated by foliar application using the reported procedure (22, 28, 29). For the foliar armyworm tests, individual corn leaves were placed on moistened pieces of filter paper in Petri dishes. The leaves were then sprayed with the test solution and allowed to dry. The dishes were infested with 10 fourth-instar Oriental armyworm larvae. Percentage mortalities were evaluated 4 days after treatment. Each treatment was performed three times. For comparative purposes, the parent compounds, **RH-5849**, **RH-5992**, and **JS-118**, were tested under the same conditions.

Table 3. Stomach Toxicities against Oriental Armyworm of Compounds Illa-u and Parent Compounds

	larvicidal activity (%) at conc (mg kg ⁻¹)						
compd	100	50	25	10	5	2.5	
Illa		100	100	0			
IIIb	100	85	0				
IIIc		90	50	10			
IIId		100	100	10			
IIIe		100	100	10			
IIIf			100	100	100	100	
Illg		100	100	100	100	70	
IIIh		100	100	100	90	80	
IIIi		100	100	100	100	50	
IIIj		100	100	100	100	90	
IIIk					100	80	
IIII		100	100	100	70	60	
IIIm					100	100	
IIIn					80	70	
Illo					90	70	
IIIp					90	50	
IIIq					100	70	
IIIr					100	90	
Ills					90	70	
IIIt					100	90	
IIIu						80	
RH-5849		100	70	0			
RH-5992				100	95	55	
JS-118					100	90	

Table 4. Stomach Toxicities against Beet Armyworm of Compounds IIIf and RH-5992

				toxic	ratio
compd	y = a + bx	LC_{50} (mg/L)	LC_{90} (mg/L)	LC ₅₀	LC ₉₀
IIIf RH-5992	y = 3.6670 + 0.9614x $y = 3.3604 + 0.8534x$	24.354 83.420	524.29 2648.6	3.4 1	5.1 1

Table 5. Contact Toxicities against Oriental Armyworm of Compounds IIIf and RH-5992

	LD ₅₀	LD ₉₀		toxic	ratio
compd	$(\mu \mathrm{g} \ \mathrm{per} \ \mathrm{larva})$	$(\mu \mathrm{g} \ \mathrm{per} \ \mathrm{larva})$	y = a + bx	LD ₅₀	LD ₉₀
IIIf	0.0195	0.0479	y = -0.899 + 3.271x		
RH-5992	0.0275	0.0739	y = -0.813 + 2.976x	100	100

Stomach Toxicity against Beet Armyworm (*Spodoptera exigua*). The stomach toxicities of the title compound **IIIf** and the corresponding parent compound **RH-5992** against beet armyworm were tested by the leaf-dip method using the reported procedure (30, 31). Leaf discs ($5 \text{ cm} \times 3 \text{ cm}$) were cut from fresh cabbage leaves and then were dipped into the test solution for 3 s. After air-drying, the treated leaf discs were placed individually into boxes (80 cm^3). Each dried treated leaf disc was infested with five third-instar beet armyworm larvae. Percentage mortalities were evaluated 3 days after treatment. Leaves treated with water and acetone were provided as controls. Each treatment was performed three times. For comparative purposes, the parent compound, **RH-5992**, was tested under the same conditions.

Contact Toxicity against Oriental Armyworm (Mythimna separata). The contact toxicities of the title compound IIIf and the corresponding parent compound RH-5992 against Oriental armyworm were tested by topical application using the reported procedure (31, 32). The compounds were dissolved in acetone to test at varying concentrations. For each fourth-instar larva of Oriental armyworm, 0.306 μ L of tested dilution was applied on the thoracic tergite with a platinum loop. After treatment, the insects were then transferred to their standard rearing conditions. Mortalities were calculated 96 h after treatment, and LD₅₀ and LD₉₀ values were established. Each treatment was performed three times. Acetone alone served as a control, and **RH-5992** was used as a positive control sample.

Contact Toxicity against Tobacco Cutworm (*Spodoptera litura*), Asian Corn Borer (*Ostrinia furnacalis*), and Cotton Bollworm (*Helicoverpa armigera*). The contact toxicities of the title compound IIIf and the corresponding parent compound RH-5992 against tobacco cutworm, Asian corn borer, and cotton bollworm were tested by topical application using the reported procedure (*31*, *33*, *34*). The compounds were dissolved in acetone to prepare five to seven concentrations. For each fourth-instar larva, 1 µL of tested dilution was applied on the thoracic tergite with an automatic microapplicator (Robbins Scientific, America). Acetone alone served as a control, and RH-5992 was used as a positive control sample. Usually, 40 insects per dose were tested, and each treatment was replicated four times. After treatment, the insects were returned to their standard rearing conditions. Mortalities were calculated 48 h after treatment, and LD₅₀ values (the median lethal dose) were established.

RESULTS AND DISCUSSION

Synthesis. *N*-Alkoxysulfenyl-*N'-tert*-butyl-*N,N'*-diacylhydrazines IIIa–u were synthesized as shown in Scheme 1. N-Chlorosulfenyl-N'-tert-butyl-N,N'-diacylhydrazines (II) were prepared for the first time by the reaction of sulfur dichloride with N'-tert-butyl-N,N'-diacylhydrazines (I) in the presence of pyridine. The key intermediates **II** without further purification were reacted with sodium alkoxy to give the title compounds **IIIa**–**u**. We found that the title compounds III have better solubility than the parent compound I in organic solvents such as methylene dichloride, chloroform, toluene, xylene, petroleum ether, etc., which should make them easier to apply in the field. Moreover, compared to the parent compounds I, the hydrophobicities of the title compounds III were obviously improved. The physical properties and elemental analyses of the title compounds IIIa-u are listed in Table 1, and their ¹H NMR data are listed in Table 2.

Bioassay. Stomach Toxicity against Oriental Armyworm (Mythimna separata). Table 3 shows the stomach toxicities of N'-tert-butyl-N,N'-diacylhydrazines and their N-alkoxysulfeny derivatives III against oriental armyworm. The results indicate that the title compounds III have excellent stomach toxicities against oriental armyworm and that some of the title compounds III exhibit higher larvicidal activities than the corresponding parent compounds. For example, the larvicidal activities of IIIa, **IIId**, and **IIIe** were 100% at 25 mg kg⁻¹, whereas the corresponding parent compound RH-5849 caused 70% mortality at this concentration; and the larvicidal activities of IIIf, IIIh, IIIj, IIIk, IIIm, IIIr, and IIIt at 2.5 mg kg^{-1} were 100%, 80%, 90%, 80%, 100%, 90%, and 90%, respectively, as compared with 55% mortality of the corresponding parent compound RH-**5992** at the same concentration. In particular, **IIIf** stood out as the best and was sent for advanced field testing. We found that

Table 6. Contact Toxicities against Asian Corn Borer, Tobacco Cutworm, and Cotton Bollworm of Compounds IIIf and RH-5992

	IIIf	IIIf		RH-5992		
	y = a + bx	LD ₅₀ (ug/g)	y = a + bx	LD ₅₀ (ug/g)	toxic ratio	
Asian corn borer	y = 1.6368 + 2.0348x	44.961	y = 3.1305 + 1.0539x	59.414	1.6	
tobacco cutworm	y = 2.4481 + 2.1164x	16.061	y = 1.5124 + 1.2813x	527.12	32.8	
cotton bollworm	y = -1.8340 + 3.6571x	73.907	y = 0.2223 + 1.5321x	1311.9	17.8	

compound **IIIf** is highly active in the field, comparable to the case in laboratory tests, which will be the subject of a subsequent publication.

Stomach Toxicity against Beet Armyworm (Spodoptera exigua). **Table 4** shows the stomach toxicities of the field testing candidate **IIIf** and the corresponding parent compound **RH-5992** against beet armyworm. LC_{50} is the median lethal concentration, and LC_{90} is the lethal concentration at 90%. The results indicated that the stomach toxicity of **IIIf** against beet armyworm was 3.4-fold higher than that of **RH-5992** from the value of LC_{50} and 5.1-fold higher from the value of LC_{90} .

The results of the stomach toxicities of the title compounds **III** against oriental armyworm and beet armyworm implied that the introduction of the *N*-alkoxysulfenate was essential for the larvacidal activity, and the changes in physical properties might account for the improvement of larvicidal activities.

Contact Toxicity against Oriental Armyworm (Mythimna separata). Table 5 shows the contact toxicities of the field testing candidate IIIf and the corresponding parent compound RH-5992 against oriental armyworm. The results indicated that IIIf has higher contact activity than RH-5992.

Contact Toxicity against Tobacco Cutworm (Spodoptera litura), Asian Corn Borer (Ostrinia furnacalis), and Cotton Bollworm (Helicoverpa armigera). Table 6 shows the contact toxicities of the field testing candidate IIIf and the corresponding parent compound RH-5992 against Asian corn borer, tobacco cutworm, and cotton bollworm. The results indicated that IIIf has higher contact activities than RH-5992, especially toward tobacco cutworm and cotton bollworm, 32.8 times and 17.8 times, respectively. This could be explained by the marked changes of the physical properties, particularly the decrease of the polarity and the increase of the lipophilicity, both of which lead to the enhancement of cuticular penetration and body assimilation

In summary, a series of novel N-alkoxysulfenyl-N'-tert-butyl-N,N'-dyacylhydrazines were designed and synthesized as insect growth regulators from the key intermediates N-chlorosulfenyl-N'-tert-butyl-N,N'-diacylhydrazines, which were prepared for the first time. Compared to N'-tert-butyl-N,N'-diacylhydrazines, these N-alkoxysulfeny derivatives displayed better solubility and improved hydrophobicities. The results of bioassays showed that the title compounds possessed a combination of strong stomach as well as contact poison properties higher than those of the corresponding parent compounds. In particular, N-methoxysufenyl-N'-tert-butyl-N-4-ethylbenzoyl-N'-3,5-dimethylbenzoylhydrazide (IIIf) as a field testing candidate has higher stomach toxicities against oriental armyworm and beet armyworm than the corresponding parent compound **RH-5992**. Furthermore, the compound **IIIf** exhibits higher contact activities against oriental armyworm, Asian corn borer, tobacco cutworm, and cotton bollworm than RH-5992. The sulfenyl substituent was essential for highlarvacidal activity.

LITERATURE CITED

- Wing, K. D. RH5849, a nonsteroidal ecdysone agonist: effects on a Drosophila cell line. *Science (Washington, DC)* 1988, 241, 467–469.
- (2) Wing, K. D.; Slawecki, R. A.; Carlson, G. R. RH5849, a nonsteroidal ecdysone agonist effects on Lepidoptera. *Science* (Washington, DC) 1988, 241, 470–472.
- (3) Hsu, A. C.-T. 1,2-Diacyl-1-alkylhydrazines, a new class of insect growth regulators. In *Synthesis and Chemistry of Agrochemicals II*; Baker, B. R., Fenyes, J. G., Moberg, W. K., Eds.; ACS Sympoisum Series 443; American Chemical Society: Washington, DC, 1991; pp 478–490.

- (4) Aller, H. E.; Ramsay, J. R. RH-5849: a novel insect growth regulator with a new mode of action. *Brighton Crop Prot. Conf.*—*Pests Dis.* 1988, 2, 511–518.
- (5) Dhadialla, T. S.; Carlson, G. R.; Le, D. P. New insecticides with ecdysteroidal and juvenile hormone activity. *Annu. Rev. Entomol.* 1998, 43, 545–569.
- (6) Dhadialla, T. S.; Jansson, R. K. Non-steroidal ecdysone agonists: new tools for IPM and insect resistance management. *Pestic. Sci.* 1999, 55, 357–359.
- (7) Heller, J. J.; Mattioda, H.; Klein, E.; Sagenmuller, A. Field evalution of RH-5992 on lepidopterous pests in Europe. *Brighton Crop Prot. Conf.*—Pests Dis. 1992, 1, 59–66.
- (8) Qian, X. H. Molecular modeling study on the structure-activity relationship of substituted dibenzoyl-1-tert-butylhydrazines and their structural similarity to 20-hydroxyecdysone. J. Agric. Food Chem. 1996, 44, 1538–1542.
- (9) Cao, S.; Qian, X. H.; Song, G. H. N'-tert-Butyl-N'-aroyl-N-(alkoxycarbonylmethyl)-N-aroylhydrazines, a novel nonsteroidal ecdysone agonist: syntheses, insecticidal activity, conformational, and crystal structure analysis. Can. J. Chem. 2001, 79, 272–278.
- (10) Wang, Q. M.; Huang, R. Q.; Bi, F. C. Dithio-bis(hydrazide) compounds and its application. CN 1271727, 2000.
- (11) Mao, C. H.; Wang, Q. M.; Huang, R. Q.; Bi, F. C.; Wang, K. L. Preparation of diacylhydrazide derivatives as insect growth regulators. CN 1654464, 2005.
- (12) Zhao, P. L.; Li, J.; Yang, G. F. Synthesis and insecticidal activity of chromanone and chromone analogues of diacylhydrazines. *Bioorg. Med. Chem.* 2007, 15, 1888–1895.
- (13) Sawada, Y.; Yanai, T.; Nakagawa, H.; Tsukamoto, Y.; Yokoi, S.; Yanagi, M.; Toya, T.; Sugizaki, H.; Kato, Y.; Shirakura, H.; Watanabe, T.; Yajima, Y.; Kodama, S.; Masui, A. Synthesis and insecticidal activity of benzoheterocyclic analogues of N'-benzoyl-N-(tert-butyl)benzohydrazide: Part 1. Design of benzoheterocyclic analogues. Pest Manage. Sci. 2003, 59, 25–35.
- (14) Sawada, Y.; Yanai, T.; Nakagawa, H.; Tsukamoto, Y.; Yokoi, S.; Yanagi, M.; Toya, T.; Sugizaki, H.; Kato, Y.; Shirakura, H.; Watanabe, T.; Yajima, Y.; Kodama, S.; Masui, A. Synthesis and insecticidal activity of benzoheterocyclic analogues of N'-benzoyl-N-(tert-butyl)benzohydrazide: Part 2. Introduction of substituents on the benzene rings of the benzoheterocycle moiety. Pest Manage. Sci. 2003, 59, 36–48.
- (15) Sawada, Y.; Yanai, T.; Nakagawa, H.; Tsukamoto, Y.; Tamagawa, Y.; Yokoi, S.; Yanagi, M.; Toya, T.; Sugizaki, H.; Kato, Y.; Shirakura, H.; Watanabe, T.; Yajima, Y.; Kodama, S.; Masui, A. Synthesis and insecticidal activity of benzoheterocyclic analogues of N'-benzoyl-N-(tert-butyl)benzohydrazide: Part 3. Modification of N-tert-butylhydrazine moiety. Pest Manage. Sci. 2003, 59, 49–57
- (16) Yanagi, M.; Sugizaki, H.; Toya, T.; Kato, Y.; Shirakura, H.; Watanabe, T.; Yajima, Y.; Kodama, S.; Masui, A.; Yanai, T.; Tsukamoto, Y.; Sawada, Y.; Yokoi, S. New hydrazine derivative and pesticidal composition comprising said derivative as an effective ingredient. EP 496342, 1992.
- (17) Yanagi, M.; Watanabe, T.; Masui, A. ANS-118: A novel insecticide. Brighton Crop Prot. Conf.—Pests Dis. 2000, 2, 27– 32
- (18) Zhang, X. N.; Li, Y. F.; Zhu, L. M.; Liu, L. Y.; Sha, X. Y.; Xu, H.; Ma, H. J.; Wang, F. Y.; Ni, Y. P.; Guo, L. P. Preparation of diacylhydrazines insecticides and their intermediates. CN 1313276, 2001.
- (19) Xu, N. F.; Zhang, Y.; Zhang, X. N.; Ni, J. P.; Xiong, J. M.; Shen, M. Manufacture of JS118 insecticide suspension agent. CN 1918986, 2007.
- (20) Carlson, G. R.; Dhadialla, T. S.; Hunter, R.; Jansson, R. K.; Jany, C. S.; Lidert, Z.; Slawecki, R. A. The chemical and biological properties of methoxyfenozide, a new insecticidal ecdysteroid agonist. *Pest Manage. Sci.* 2001, 57, 115–119.
- (21) Wang, Q. M.; Cheng, J. R.; Huang, R. Q. Synthesis and insecticidal evaluation of novel N-(S-amino)sulfenylated derivatives of diacylhydrazines. *Pest Manage. Sci.* 2002, 58, 1250– 1253.

- (22) Mao, C. H.; Wang, Q. H.; Huang, R. Q.; Bi, F. C.; Chen, L.; Liu, Y. X.; Shang, J. Synthesis and insecticidal evaluation of novel N-oxalyl derivatives of tebufenozide. *J. Agric. Food Chem.* 2004, 52, 6737–6741.
- (23) Fukuto, T. R. Propesticides. In *Pesticides Synthesis through Rational Approaches*; Magee, P. S., Eds.; American Chemical Society: Washington, DC, 1984; pp 87–101.
- (24) Kawata, M.; Umetsu, N.; Fukuto, T. R. N-Alkoxy sulfenylcarbamates. US 4394383, 1983.
- (25) Umetsu, N.; Nishioka, T.; Fukuto, T. R. Formation of Alkoxysulfenyl Derivatives of Carbofuran by Acid-Catalyzed Alcoholysis of Carbosulfan. J. Agric. Food Chem. 1984, 32, 765– 768
- (26) He, Z. R. Sulfur dichloride. *Inorganic Preparation Chemistry Handbook*; Fuel Chemical Industry Press: 1972; p 224 (Chinese).
- (27) Abbott, W. S. A method of computing the effectiveness of an insecticide. J. Econ. Entomol. 1925, 18, 265–267.
- (28) Hsu, A. C.; Murphy, R. A.; Aller, H. E.; Hamp, D. W.; Weinstein, B. Insecticidal N'-substituted-N,N'-disubstitutedhydrazines. US 5117057, 1992.
- (29) Luo, Y. P.; Yang, G. F. Discovery of a new insecticide lead by optimizing a target-diverse scaffold: Tetrazolinone derivatives. *Bioorg. Med. Chem.* 2007, 15, 1716–1724.

- (30) Ma, H.; Wang, K. Y.; Xia, X. M.; Zhang, Y.; Guo, Q. L. The toxity testing of five insecticides to different instar larvae of Spodoptera exigua. *Xiandai Nongya* 2006, 5, 44–46.
- (31) Busvine, J. R. Recommended methods for measurement of pest resistance to pesticides. FAO Plant Production and Protection Paper; Rome, Italy, 1980; No. 21, pp 3–13, 119–122.
- (32) Bandani, A. R.; Butt, T. M. Insecticidal, antifeedant and growth inhibitory activities of efrapeptins, metabolites of the fungus Tolypocladium. *Biocontrol. Sci. Technol.* 1999, 9, 499–506.
- (33) Wang, K. Y.; Jiang, X. Y.; Yi, M. J.; Chen, B. K. Studies on resistance change and management strategy of Spodoptera exigua. *Nongya* **2001**, *40* (6), 29–32.
- (34) Chen, B. K.; Wang, K. Y.; Jiang, X. Y.; Yi, M. J. Toxicity of insecticides to different generations or different instar of Spodoptera exigua. *Nongyaoxue Xueba* 2000, 2 (3), 91–93.

Received for review August 8, 2007. Revised manuscript received September 21, 2007. Accepted September 21, 2007. This work was supported by the National Key Project for Basic Research (2003CB114400), the National Natural Science Foundation of China (20672064 and 20421202), the Program for New Century Excellent Talents in University (NCET-04-0228), and the Foundation for the Author of National Excellent Doctoral Dissertation of P. R. China (200255).

JF072390F